
RCI/RSE

Regex Search and Replace
for XyWrite 4/Windows

C.L. Distefano

rev. September 24, 2022

1. Introducing RCI/RSE and REGEX

RCI and its companion routine RSE use a Perl-compatible regular expres-
sion (regex) engine to perform search-and-replace operations analogous
to XyWrite’s CI (Change Invisible) and SEarch commands.

Another utility, REGEX, takes a regular expression and lists all matches
in the subject file.

Regular expressions add power and flexibility to XyWrite’s native SEarch
and CHange commands. Among many other advantages, you’ll be able
to reorder capturing groups—the regex equivalent of XyWrite’s SEarch
wildcards—on the replacement side of the change. You can also search
for arbitrarily large blocks of text and replace them with other blocks of
text. And much more . . .

1.1. The Power of Regular Expressions

Although regexes have a well-deserved reputation for geeky complexity,
the basics are straight-forward—and the rewards immediate. To ease the

1

https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions
https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

learning curve, RCI and RSE make regexes Xy-friendly : XyWrite wild-
cards can be used in the search string, and are translated into their regex
equivalents. Also, once you’ve perfected a regex, you can save it for future
re-use. See “Canned Searches” (Section 5, below).

If you’re frustrated by XyWrite’s error message Wildcards must be in
the same order on both sides of a change, RCI is for you. Text captured
by wildcards (regex capturing groups) on the search side can be reshuf-
fled in whatever order you like on the replace side. For example—and
this only hints at the possibilities—you can transpose all dates in the
form MM/DD/YYYY to YYYY-MM-DD. Simple, you say—but try doing it with
XyWrite wildcards: you can’t.

1.2. Installation

RCI is bundled with the XyWWWeb Jumbo U2. Required external pro-
grams are included in U2EXTRAS.ZIP. Unzip all files into Editor’s direc-
tory.

1.3. RCI Constituent Files

AI3.EXE AutoIt v3 EXEcutable for Win32 (compressed)
RCI.A3X RCI (Change module) .A3X executable
RCI.BAT Batch file for sequential search-and-replace operations
RCI.EXE RCI (Change module) EXEcutable
RCI.FRM frames RCI, RSE, REGEX and related U2 routines
RSE.A3X RSE (SEarch module) .A3X executable
REGEX.EXE Regex search utility EXEcutable
REGEX.A3X Regex search utility .A3X executable
REGEX.PDF Excerpt from AutoIt documentation on regexes
RCI.PDF This documentation file∗.

∗Written in XyWrite 4 and typeset with LATEX

2

http://users.datarealm.com/xywwweb/##JumbU2
http://users.datarealm.com/xywwweb/U2EXTRAS.ZIP
https://www.autoitscript.com/
https://en.wikipedia.org/wiki/XyWrite##Version_history
https://www.latex-project.org/

1.4. Two “Flavors”: U2 and Windows

RCI, RSE, and REGEX are U2 frames for XyWrite 4 + the XyWWWeb
Jumbo U2. RCI.EXE and REGEX.EXE are Windows command-prompt EXE-
cutables (compiled AutoIt scripts). The EXEcutables, as standalone Win-
dows programs, are relevant for users of XyWrite III+ or Nota Bene
for DOS or Windows, as well as for XyWrite 4 users.

1.5. Useful Information

Appendix A has a list of XyWrite search wildcards available for use
with RCI/RSE/REGEX, along with their regex equivalents. Appendix B
is a cheat sheet for Perl-compatible regular expressions.

2. Setting SEARCH.TXT

Before running RCI.EXE or REGEX.EXE, you must set a search string/regex—
and, for RCI.EXE, a replacement string—in a separate file, SEARCH.TXT,
which must be located in the same directory as RCI.EXE and REGEX.EXE.
The format for SEARCH.TXT is:

search_string [regex]
|---|
replacement_string

Search String (Regex). The regex on the search side of the separator
may include newlines, represented by actual CrLfs, the XyWrite carriage-
return wildcard <= , wildcard function WC, or the regex tokens \r\n.
Separator. The separator consists of the string |---| with a newline
fore and aft.

If the separator is omitted, the entire contents of SEARCH.TXT will be
the search string and, if found, will be replaced by nothing—i.e., deleted.
Replacement String. In general, the replacement string is a string lit-
eral. There are, however, three important exceptions:

• Regex special characters must be “escaped” with \. See subsection
2.2, below.

3

http://users.datarealm.com/xywwweb/index.shtml
http://users.datarealm.com/xywwweb/index.shtml
https://en.wikipedia.org/wiki/XyWrite##Version_history
https://www.notabene.com/

• Text captured by capturing groups on the search side is represented
by $1, $2, $3 . . . (or \1, \2, \3, . . .) on the replacement side. See
subsection 3.3.2, below.

• XyWrite’s CrLf wildcard <= or function WC may be used instead
of an actual newline.

2.1. Case Sensitivity

All searches are case-sensitive, unless the search string contains regex
option (?i). Case-sensitivity starts at the point in the search string where
(?i) appears. Thus, abc(?i)DEF matches abcDEF and abcdef, but not
ABCDEF ; while (?i)abcDEF matches all case variants of abcdef.

2.2. Regex Special Characters

The following characters have special meanings in regular expressions:

\ . ^ $ | [({ * + ? #

To include any of them in your search string, you must “escape,” or
“quote,” them—i.e., prepend \, the regex escape character. Thus, d:\path-
\myfile.txt becomes d:\\path\\myfile.txt; $5.00 becomes \$5\.00;
and so forth.

2.3. Replacing Blocks of Literal Text

The search regex may consist of a block of text of any length. Be careful,
though: longer text passages will likely contain one or more regex special
characters (such as .), which will have to be escaped with \. In the
alternative, long blocks of literal text can be enclosed between the regex
quote and end-quote tokens, \Q . . . \E, thus avoiding the need to escape
special characters contained in the text:

\Q[existing block of text]\E
|---|
[replacement text]

4

The length of the search or replace string is virtually unlimited. I’ve
successfully performed search and replace with strings the size of Moby-
Dick in its entirety—that’s 1.2 megabytes—on either side of the search.

3. Windows Command-Prompt Syntax

This section assumes that search and replacement strings have been set in
SEARCH.TXT (Section 2, above). RCI.EXE requires both search and replace-
ment strings in SEARCH.TXT. REGEX.EXE requires only a search string; any
replacement string in SEARCH.TXT is ignored.

3.1. RCI.EXE: Search and Replace

RCI.EXE accepts four arguments, all optional. The usage is:

RCI.EXE file_in file_out start_pos number_of_changes

3.1.1. Default arguments

If you omit arguments, RCI.EXE defaults to the following:

file_in: ORIGINAL.TXT, in same directory as RCI.EXE
file_out: CHANGED.TXT, in same directory as RCI.EXE
start_pos: 0 (search from top of file_in)
number_of_changes: 0 (change all instances)

To alter some defaults but not others, use a dot (.) to represent the
default value of an argument. For example:

RCI.EXE d:\path\my.txt . . 10

Translation: Use d:\path\my.txt as the subject file, save the changed file as CHANGED.TXT,

start search from top of my.txt, make a maximum of 10 changes.

5

Note

RCI does not modify the subject file unless you instruct it to do so, by
making the first and second arguments point to the same filename:

RCI.EXE my.txt my.txt

3.2. REGEX.EXE: List All Regex Matches

REGEX.EXE accepts three arguments, all optional. The usage is:

REGEX.EXE file_in file_out start_pos

3.2.1. Default arguments

If you omit arguments, REGEX.EXE defaults to the following:

file_in: ORIGINAL.TXT, in same directory as REGEX.EXE
file_out: RESULTS.TXT, in same directory as REGEX.EXE
start_pos: 0 (search from top of file_in)

To alter some defaults but not others, use a dot (.) to represent the
default value of an argument. For example:

REGEX.EXE d:\path\my.txt . 3599

Translation: Use d:\path\my.txt as the subject file, save the changed file as RESULTS.TXT,

start search from character position 3599 in my.txt.

3.3. Examples

3.3.1. Search and Replace Using Big Blocks of Text

SEARCH.TXT:

\QI’ve had a perfectly wonderful evening. But this wasn’t it.\E
|---|
I didn’t attend the funeral, but I sent a nice letter saying
I approved of it.

6

RNote the use of \Q ... \E to enable literal quoting.

Command:
RCI.EXE

Changes are in CHANGED.TXT.

3.3.2. Search and Replace Using XyWrite Wildcards

SEARCH.TXT:

In XyWrite 4 the search string may contain search wildcards A ,
L , N , S , W , X , <= , 10 , 13 , . , « , and » . The first seven of
these are available in XyWrite III+; alternatively, the search string
may use wildcard functions WA, WL, WN, WS, WW, WX, and WC, in lieu of the
corresponding wildcards.

On the replacement side, “back-references” to the text matched by wild-
cards are made with $1, $2, $3 ... (or \1, \2, \3 ...), where $1 (\1) is the
first wildcard, $2 (\2) is the second wildcard, etc.

So, to make the date-format change from MM/DD/YYYY to YYYY-MM-DD,
you could set SEARCH.TXT as follows:

N N / N N / N N N N
|---|
$5$6$7$8-$1$2-$3$4

Wildcard functions can be used instead of the wildcards themselves (for
example, if you’re using XyWrite III+):

WN WN /WN WN /WN WN WN WN /
|---|
$5$6$7$8-$1$2-$3$4

You could also use an actual regex instead of wildcards, with the cap-
turing groups (in parens) corresponding to \1, \2, \3... or $1, $2, $3,
etc.:

7

(\d{2})/(\d{2})/(\d{4})
|---|
$3-$1-$2

Or, more precisely and narrowly, covering the years from 1900 to 2099,
inclusive:

([01]?\d)/([0-3]?\d)/((19|20)\d\d)
|---|
$3-$1-$2

(In the second and third examples, the numbered references, \1, \2 . . .
($1, $2, . . .) refer to the capturing groups in parentheses, which is why
there are fewer than in the wildcard example.)

Note 1

If XyWrite wildcards (or wildcard functions) are used in the search string,
regex matching becomes “lazy” (regex default is “greedy”) and searches
span newlines—XyWrite’s native behavior. Appendix B has further in-
formation.

Note 2

RCI/RSE/REGEX define wildcard W as matching any number of characters,
including newlines. As XyWrite’s 79-character limit is removed, there is
never a need to use multiple W s.

Note 3

The search/replace examples can be run with REGEX.EXE instead of RCI.EXE.
With REGEX.EXE, search “hits” and their character positions in the subject
file are listed in RESULTS.TXT. The subject file is not modified.

8

4. XyWrite 4 (U2) Usage

4.1. RCI: Regex Change Invisible

4.1.1. Commnd Line (“CMline”)

RCI[/#][/S|/T] [sep]search_regex[sep]replacement_string[sep]<Helpkey>
[/#] = maximum number of changes to make (default = change all)
[/S] = search within Selected text (DeFined block) only
[/T] = search from top_of_file regardless of cursor position

default = search from cursor position to end of file
[sep] = separator character not contained in search or replace strings

If the search and replace are set in SEARCH.TXT (see Section 2, above),
then the usage is simply:

RCI[/#][/S|/T]<Helpkey>

Note 1

RCI does not modify the subject file unless you instruct it to do so, by
making the first and second arguments point to the same filename:

RCI.EXE my.txt my.txt

Note 2

The number of changes reported by frame RCI is often higher than the
number that would be reported by XyWrite’s native CI command. This is
because the regex engine counts the number of captured groups matched
by the regex, not the number of matching strings. Thus, for example,
with the date format change

RCI / N N - N N - N N N N /$5$6$7$8-$1$2-$3$4/<Helpkey>

if the search string matches once, the number of changes reported will be
8, because each N wildcard represents a captured group and there are
eight N wildcards in the match. XyWriters will find this strange—but
that’s the way it is.

9

4.1.2. XPL Usage

For example:

«SV50,"Merry"Happy"»JM 2.rci/tQ2 ;*;

4.2. RSE: Regex SEarch

RSE[/S|/T] [sep]search_regex[sep]<Helpkey>
/S = search within Selected text (DeFined block) only
/T = search from top_of_file regardless of cursor position

default = search from cursor position to end of file
[sep] = separator character not contained in search or replace

strings (optional -- see note)

Operation is from cursor position to end of file, or within a DeFined block.
R The search string (regex) may—but need not—be enclosed in sepa-
rators.

If the regex is set in SEARCH.TXT, the usage is:

RSE[/S|/T]<Helpkey>

4.3. REGEX: Regex Match Lister

REGEX[/S|/T] [sep]search_regex[sep]<Helpkey>
/S = search within Selected text (DeFined block) only
/T = search from top_of_file regardless of cursor position

default = search from cursor position to end of file
[sep] = separator character not contained in search or replace

strings (optional -- see note)

Operation is from cursor position to end of file, or within a DeFined block.
Results are listed in RESULTS.TXT, located in Editor’s directory. Use

Helpkey to execute the CMline eXtended Macro to jump to any search
result in the subject file.

10

RThe search string (regex) may—but need not—be enclosed in sepa-
rators.

If the regex is set in SEARCH.TXT, the usage is:

REGEX[/S|/T]<Helpkey>

5. “Canned” Searches

Frame setRCI* supports “canned” search/replace strings (write once, use
many times). Search/replace pairs are stored in your U2 file as sepa-
rate frames. Each must have its own frame, and the frame name must
start with Rx-. In the frame, the search/replace string must be saved to
Save/Get 49 in SEARCH.TXT format—see Section 2. For example:

{{5Rx-Merry}} "Merry" to "Happy"
{002}«SV49,Merry
|---|
Happy»{002}

Then, to set the canned search/replace pair and execute it in your XPL
program:

«SV50,Rx-Merry»JM 2.setrciQ2 ;*; Set search
JM 2.rciQ2 ;*; Execute search

or

«SV50,Merry»JM 2.setrciQ2 ;*; Set search
JM 2.rciQ2 ;*; Execute search

or

JM 2.setrci:Rx-MerryQ2 ;*; Set search
JM 2.rciQ2 ;*; Execute search

Canned searches can also be set from the CMline. In CMline usage, the
initial Rx- can be dropped from the search name. For example:

11

SETRCI Merry<Helpkey>; then

RCI<Helpkey>

Canned search frames for use with RSE or REGEX need not contain
replacement strings. See the examples below.

5.1. Some Useful Canned Searches, for use with RSE
or REGEX (Improve/Adjust to Taste)

{{5Rx-Email}} Email address (non-Unicode, non-quoted)
{002}«SV49,(?i)(?:[-\w!#$%&’*+/=?^_‘{\|}~][-\w.!#$%&’*+/=?
^_‘{\|}~]*)@(?:[\w.-]*)\.(?:[a-z.]{2,6})»{002}

{{5Rx-URL}} URL
{002}«SV49,(?i)(?:(?:https{0,1}|ftp|file|news|telnet|nttp)
:/{2,3}(?:[-\w:/%\\\.]+)+(?::\d+)?(?:/([\w/_\.]*(\?:/%\S+)
?)?)?)»{002}

{{5Rx-IPaddress}} Numeric IP address (quick and dirty)
{002}«SV49,(?:[0-2]{0,1}\d{0,1}\d\.){3}[0-2]{0,1}\d{0,1}\d»{002}

{{5Rx-Username}} Username 3-16 chars (alphnum, underscore & hyphen)
{002}«SV49,(?i)[-\w_]{3,16}»{002}

{{5Rx-Password}} Password 6-25 chars
{002}«SV49,(?i)[-\w.,;&$#_]{6,25}»{002}

6. Utilities

The RCI package includes the following search tools:

RCITE List all lines/paragraphs matching a string or regex (U2 frame)
RCI.BAT Run sequential canned searches against a single file
RCIBAT Run RCI.BAT against the current file (U2 frame)

12

6.1. Frame RCITE

U2 frame RCITE lists all lines/paragraphs in the current file containing a
(case-insensitive) string, which may be a regular expression.
Usage:

RCITE [string/regex]<Helpkey>

6.2. RCI.BAT

RCI.BAT runs up to 999 sequential preset RCI search-and-replace opera-
tions against a single subject file. Before running RCI.BAT, set the search-
and-replace strings in files named SEARCH.1, SEARCH.2, . . . , all located in
the directory that contains RCI.A3X. The format for each SEARCH.# file
is the same as for SEARCH.TXT; see Section 2, above.
Usage:

RCI.BAT file_in file_out start_pos number_of_changes

The arguments, all optional, are the same as for RCI.EXE; see Subsec-
tion 3.1.1, above.

6.3. Frame RCIBAT

U2 frame RCIBAT runs RCI.BAT against the file in the current window,
and displays the changes (without saving the file). Before running RCIBAT,
prepare search-and-replace strings in files named SEARCH.1, SEARCH.2,
. . . , as per the instructions in the preceding subsection.
Usage:

RCIBAT<Helpkey>

RRCIBAT operates on the entire file, regardless of cursor position.

13

7. Adding Comments to Regular Expressions

Option (?x) allows working regex patterns to be formatted and com-
mented. Starting at the point at which (?x) appears, white space outside
of groups is ignored and everything from # to the end of the line is treated
as a comment.

Here is a sample SEARCH.TXT that works with RCI:

(?x) # Change phone number format from (###) ###-#### to ###-###-####
(?U) # Ungreedy (lazy) matching
\(# open parens (escaped)
([2-9][0-8]\d) # area code (\1)
\) # close parens (escaped)
[-\s\.]?? # first separator
([2-9]\d{2}) # 3-digit exchange (\2)
[\s-\.]?? # second separator
(\d{4}) # 4-digit number (\3)
|---|
\1-\2-\3

Enjoy!

—CLD

14

Appendices

A. XyWrite 4 Wildcards and Their Regular
Expression Equivalents

[A] = [A-Za-z0-9ÇüéâäàåçêëèïîìÄÅÉæÆôöòûùÖÜáíóúñÑ]
[L] = [A-Za-zÇüéâäàåçêëèïîìÄÅÉæÆôöòûùÖÜáíóúñÑ]
[N] = \d
[S] = \r\n|[\n\r\s\x00\x01\x02\x03\x08\x09\x1A !"()+,-./:;

<=>?[\]^‘{|}\x7E\x7F£Ptf ¿¡ AE AF\xC2\xC3\xB0\xB1\xB2\xB3
\xB4\xB9\xBA\xBB\xBC\xBE\xBF\xC0\xC1\xC4\xC5\xC8\xC9
\xCA\xCB\x5D]|[\xFE\xFF]..

[W] = .*
[X] = .
[.] = [!.?¿¡]
[10] = \x0A
[13] = \x0D
[CrLf] = \r\n
[<<] = «
[>>] = »

Negation [-] ^
The XyWrite wildcard [-] negates the next character: "walk[-]s"
matches "walk" or "walked" but not "walks". Regex negation flag ^
can be used to negate a single character (walk^s matches "walk"
but not "walks"), or a set of characters ("die[^st]" matches
"die" but not "dies" or "diet").

Disjunction (Alternation) [O] |
The regex equivalent of Xy’s "boy[O]girl" is "boy|girl". The |
operator is more flexible. For example, "b(o|uo)y|gir[dl]"
matches "boy", or "buoy" or "gird" or "girl". XyWrite equivalent
is "boy[O]buoy[O]gird[O]girl". The regex can also be written as

15

"boy|buoy|gir[dl]" or, even more succinctly, "bu??oy|gir[dl]".

Repetition
Numeric wildcards [0]...[9] are rendered with the number in curly
braces after the character or group in question. Thus, [100X] =
.{0,100}, meaning anywhere from 0 to 100 of any character. In
regex, you can also specify a different lower limit. For example,
.{5,10} means a minimum of 5 and a maximum of 10 of any
character.

Searching for Whole Words (SE/W)
Regex token "\b" denotes a zero-length word boundary. The regex
equivalent of XyWrite’s SE/W "walk" is "\bwalk\b". Of course,
other regex special characters can be used with "\b". Thus,
"\b[Ww]\D\S{2,}\b" means any word form (broadly defined)
beginning with "W" or "w" and having at least 2 characters other
than digits (\D = ^\d) or separators (\S = ^\s). "\b[A-Za-
z]{1,}\b" means any alphabetic word form having one or more
letters. And so forth.

Searching for Whole Lines
With option (?m) (multiline matching), ^ and $ match line
beginnings and endings. For example, to find any line containing
"regex":
(?m)^.*regex.*$

16

B. Perl-Compatible Regular Expressions:
Quick Reference

(See also included file REGEX.PDF—excerpt from AutoIt documentation)

\ Escape a regex special character
\n Newline (line feed)
\r Carriage return
\r\n CrLf
\t Tab character
[...] Character set
[a-z] Character range
[^...] Character set negation
. Any character
\d, \D Any digit, any non-digit
\w, \W Any word char, any non-word char
\s, \S Any whitespace char, any non-whitespace char
^ Start of string or line
$ End of string or line
\A Start of string
\Z End of string
\z End string, no line breaks
\b Word boundary (zero-length)
\B Non-word boundary
\033 Octal char
\x1B Hex char
\l Lowercase next
\u Uppercase next
\L Lowercase until \E
\U Uppercase until \E
\E End quote/modification
\Q Quote until \E
| OR (disjunctiion)
? Optional (greedy)
?? Optional (lazy)
* Repeat 0+ (greedy)

17

*? Repeat 0+ (lazy)
+ Repeat 1+ (greedy)
+? Repeat 1+ (lazy)
{n} Repeat n times
{n,m} Repeat n to m (greedy)
{n,m}? Repeat n to m (lazy)
{n,} Repeat at least n (greedy)
{n,}? Repeat at least n (lazy)
(...) Capturing group
(?:...) Non-capturing group
$1-$9 Group backreferences
(?>...) Atomic group
?+, *+ Possessive quantifiers
(?=...) Positive lookahead
(?!...) Negative lookahead
(?<=..) Positive lookbehind
(?<!..) Negative lookbehind
\G Continious Match
(?(?=.).|.) If. then . else .
(?#...) Comment
\033 Octal char
(?x) Extended (ignore whitespace, comment from # to end of line)
\x1B Hex char
\X Unicode character
\uFFFF Specific unicode char
\p{x} Char with x property
\P{x} Char without x property

Options:
- Are enclosed in (?) sequences;
- Can be grouped together: "(?imx)";
- Following a hyphen are negated: "(?im-sx)";
- Outside a group, affect the pattern from that point onwards;
- Inside a group, affect that group only.

18

Options lose their special meaning inside a character
class [...], where they are treated literally.

Common options:

(?i) Caseless: matching becomes case-insensitive from the
point where (?i) appears onward. By default, matching is
case-sensitive. By default, casing applies to ASCII letters
A-Z and a-z only. If Unicode Category Properties (*UCP) is
enabled, casing applies to the entire Unicode plane 0.

(?m) Multiline: ^ and $ match the beginning and end of lines.
By default, multiline is off. Multiline matching is enabled
automatically in RCI when XyWrite wildcards appear in the
search string.

(?s) Single-line or DotAll: . matches anything including a
newline sequence. By default, DotAll is off; hence . does
not match a newline sequence.

(?U) Ungreedy: quantifiers become "lazy" from the point
where (?U) appears. By default, patterns are "greedy",
meaning that quantifiers * + ? {...} will match the longest
string that doesn’t cause the rest of the pattern to fail.
Non-greedy (lazy) patterns will match the smallest string
that still allows the rest of the pattern to match. XyWrite
SEarch wildcards are lazy.

(?x) eXtended: whitespaces outside character classes are
ignored, and # starts a comment up to the next solid newline
in pattern. Meaningless whitespaces between components make
regular expressions much more readable. By default,
whitespaces match themselves and # is a literal character.

19

	Introducing RCI/RSE and REGEX
	The Power of Regular Expressions
	Installation
	RCI Constituent Files
	Two ``Flavors'': U2 and Windows
	Useful Information

	Setting SEARCH.TXT
	Case Sensitivity
	Regex Special Characters
	Replacing Blocks of Literal Text

	Windows Command-Prompt Syntax
	RCI.EXE: Search and Replace
	Default arguments

	REGEX.EXE: List All Regex Matches
	Default arguments

	Examples
	Search and Replace Using Big Blocks of Text
	Search and Replace Using XyWrite Wildcards

	XyWrite 4 (U2) Usage
	RCI: Regex Change Invisible
	Commnd Line (``CMline'')
	XPL Usage

	RSE: Regex SEarch
	REGEX: Regex Match Lister

	``Canned'' Searches
	Some Useful Canned Searches, for use with RSE or REGEX (Improve/Adjust to Taste)

	Utilities
	Frame RCITE
	RCI.BAT
	Frame RCIBAT

	Adding Comments to Regular Expressions
	XyWrite 4 Wildcards and Their Regular Expression Equivalents
	Perl-Compatible Regular Expressions: Quick Reference

